Rapamycin promotes osteogenesis under inflammatory conditions

نویسندگان

  • Xing Li
  • Bei Chang
  • Banchao Wang
  • Wenhuan Bu
  • Liang Zhao
  • Jie Liu
  • Lin Meng
  • Lu Wang
  • Ying Xin
  • Dandan Wang
  • Qi Tang
  • Changyu Zheng
  • Hongchen Sun
چکیده

Chronic periodontitis, a common oral disease, usually results in irreversible bone resorption. Bone regeneration is a complex process between bone‑forming activity of osteoblasts and bone‑resorbing activity of osteoclasts, and still remains a challenge for physicians clinically. A previous study demonstrated that the mechanistic target of rapamycin signaling pathway is involved in osteogenic differentiation of mesenchymal stromal cells. Herein, whether rapamycin could be used to induce osteogenic differentiation of primary bone marrow‑derived mesenchymal stem cells (BMSCs) in vitro and promote new bone formation in vivo were evaluated. The results demonstrated that rapamycin alone was not enough to fully induce osteoblast differentiation in vitro and enhanced bone regeneration in vivo. Interestingly, rapamycin in rapamycin plus lipopolysaccharide (LPS)‑treated BMSCs significantly increased the gene expression levels of Sp7 transcription factor, runt related transcription factor 2, alkaline phosphatase (ALP) and collagen I (Col I), ALP activity, and calcium nodule at different time points in vitro, indicating that osteoblast differentiation occurs by rapamycin when BMSCs are exposed to LPS simultaneously. It was also demonstrated that rapamycin in rapamycin plus LPS‑treated rats promoted bone regeneration in vivo. These results suggest that rapamycin may influence osteoblast differentiation and new bone formation after LPS induces an inflammatory environment. Rapamycin may be used to treat periodontitis associated with bone loss in future clinical practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orchestrated Action of PP2A Antagonizes Atg13 Phosphorylation and Promotes Autophagy after the Inactivation of TORC1

Target of rapamycin complex 1 (TORC1) phosphorylates autophagy-related Atg13 and represses autophagy under nutrient-rich conditions. However, when TORC1 becomes inactive upon nutrient depletion or treatment with the TORC1 inhibitor rapamycin, Atg13 dephosphorylation occurs rapidly, and autophagy is induced. At present, the phosphatases involved in Atg13 dephosphorylation remain unknown. Here, w...

متن کامل

Rapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents.

AIMS Drug-eluting stents (DES) may be associated with an increased risk for stent thrombosis when compared with bare-metal stents. In endothelial cells, rapamycin induces tissue factor (TF) by inhibiting the mammalian target of rapamycin (mTOR). However, the effect of mTOR inhibition on TF activity and thrombus formation in vivo has not yet been studied. Moreover, it is unclear whether second-g...

متن کامل

Hypoxia Promotes Osteogenesis but Suppresses Adipogenesis of Human Mesenchymal Stromal Cells in a Hypoxia-Inducible Factor-1 Dependent Manner

BACKGROUND Bone fracture initiates a series of cellular and molecular events including the expression of hypoxia-inducible factor (HIF)-1. HIF-1 is known to facilitate recruitment and differentiation of multipotent human mesenchymal stromal cells (hMSC). Therefore, we analyzed the impact of hypoxia and HIF-1 on the competitive differentiation potential of hMSCs towards adipogenic and osteogenic...

متن کامل

Rapamycin reduces Drosophila longevity under low nutrition.

Rapamycin treatment is considered a pharmacological intervention with the potential to mimic the longevity benefits of dietary manipulations. However, how rapamycin interacts with nutrition is not fully understood. Here we studied the effect of rapamycin on the longevity of Drosophila under a range of dietary conditions. In diets low in nutrients, rapamycin reduced longevity in a dosage-depende...

متن کامل

Murine dendritic cell rapamycin-resistant and rictor-independent mTOR controls IL-10, B7-H1, and regulatory T-cell induction.

Mammalian target of rapamycin (mTOR) is an important, yet poorly understood integrative kinase that regulates immune cell function. mTOR functions in 2 independent complexes: mTOR complex (mTORC) 1 and 2. The immunosuppressant rapamycin (RAPA) inhibits mTORC1 but not mTORC2 and causes a paradoxical reduction in anti-inflammatory interleukin (IL) 10 and B7-homolog 1 (B7-H1) expression by dendrit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017